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ABSTRACT
This report adapts an earlier method described by Philips and Rose
[3] to treat the compressible Navier-Stokes equations by an implicit system
of compact finite difference equations. The boundary conditions for the
related Euler problem are shown to follow formally from the finite difference

equations as the viscosity vanishes by means of singular perturbation arguments.

This report was prepared as a result of work performed under NASA
Contract No. NAS1-16394 and NAS1-15810 at ICASE, NASA Langley Research

Center, Hampton, VA 23665.



1. Introduction

A recent paper (Philips and Rose [3]) described a compact finite

difference scheme to treat the scalar convective-diffusion equation

(1) u, + au_ +bu =cu + 2 du + eu
X y XX Xy

t yy '’

and indicated modifications required to treat systems of equations of
this type when ¢, d, and e are nonsingular matrices. This paper
describes the further modifications which are necessary to extend this
treatment to the Navier-Stokes equations, a case in which ¢, d, and e
are each singular. The result shows a close, but not self-evident,
correspondence to the scheme for nonsingular coefficient matrices. The
extended scheme and the modified development which leads to it are described
in the next section.

The Euler equations arise as the formal singular perturbation limit
(0 > 0, u = shear coefficient of viscosity) of the Navier-Stokes equation
and it may be conjectured that the physically relevant generalized solutions
of the Euler equatioﬁs as well as the associated class of correct mathematical
boundary conditions for them are determined as the '"outer expansions' of the
Navier-Stokes equations in the sense of singular perturbation theory.

A simple energy argument suggests that the Navier-Stokes equations are
. well-posed under boundary conditions which are independent of the Mach number
(Problem P). 1In contrast, the theory of characteristics for hyperbolic equa-
tions shows that the number of boundary conditions for the Euler equations de-
pends upon the Mach number and is, generally, less than the number of boundary
conditidns which are appropriate for the Navier-Stokes equations. This reduc-
tion in the number of boundary conditions is a chafacteristic feature of sin-~

gular perturbation problems.




A study of the finite-difference scheme (3.9) for the Navier-Stokes
equations shows that only the Euler boundary conditions have an appreciable
effect on the solution of (3.9) as uy = 0. As a result the difference
scheme (3.9) provides for a treatment of both problems under boundary con-

ditions which are independent of the Mach number.

2. The Navier-Stokes Equations

If p, u= (u,v), T are the density, velocity, and temperature,

respectively and if

o (2uux+ Adivu u(ux+vy) ) ,

2 + Adivu
u(ux+ vy) UVy u

is the reduced stress tensor, the Navier-Stokes equations in two-dimensions

may be written

1l
o

Ot+ (usVp +pdivu

(2.1) u, + (us Vu + p'lRT grad p + Rgrad T = p = div 7'

T, + (u- V)T + (v-1)Tdivu = (pc ) 'k div grad T + £ ,

where
_ -1 2.2 2 .2
f = (pcv) u[ux+vy+ 2(uy+vx) +A(divu) " ].

Here k, u, A, Cyo cp are the coefficient of heat conduction, the shear

and second coefficients of viscosity, and the specific heats at constant
volume and pressure, respectively; also, R = cp - c, and Y = cp/cv.
Equations (2.1) may be expressed in the form

. + +BU_ =¢C + +F
(2.2) U+ AU g Upg ¥ 20U, +EU ,

where the transpose of the vector U is given by (p,u,v,T) and
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e
in which Pr = —T(P- is the Prandtl number.

It will be convenient to introduce the matrices

4]
]

diag(o,lylsl),
(2.4)

<>
[]

I ~-J-= diag(l90,0’0)-

With this definition equations (2.2) may be written in system form as

’

U_+AU_ +BU_ =J(V_+W_+F)
t X y X y

(2.5) Cu_+ DU JV
X y

DU_+ EU JW.
X y

Because the elliptic operator on the right-hand side of equation (2.2)
has rank 3, it is not immediately apparent how boundary conditions may be

imposed. To this end, consider the one-dimensional problem
(2.6) Ut» + AUX = CUxx’

where A is symmetric,

and al1 > 0 while

is non-negative. With initial and boundary conditions given by




a) Ux,0) =U,
2.7) b) U@,t) =0,
C) JU(l,t) =0,

if (2.6) is multiplied by UT and then integrated the result is the

"energy" expression

1 1
= -d—f Udx + UTCU + Ut (2AU - cu,)
dt X X
0

0

Employing the initial and boundary conditions (2.7) and noting that a,, > 0

11
by assumption, there results
; 1 1
T =T, \%;
(2.8) fU (x,£)U(x,t)dx < f U (x)U(x)dx,
0 0

where the equality applies if and only if Ux = const. This, of course,

implies the uniqueness of the solution for the linear problem considered.
Applied to the hydrodynamic problem (2.2), a;q = u 1in which case the

boundary conditions (2.7b).and (2.7¢) correspond to inflow and outflow

conditions. We thus state:

Problem P: Solve the Navier-Stokes equations in the form (2.5) in a domain

D wunder the initial and boundary conditions

U(x,y,0) = U
(2.9) ) U(*,t) = U inflow
JU(*,t) = JU outflow.

More specifically, we assume 0 is the unit square on which inflow conditions

apply for x=0 or y=0 while outflow conditions apply for x=1 or y=1.




A more complete discussion of properly-posed boundary conditions
for problems of the type considered in this paper has been given by

Strikwerda [4].

3. A Compact Finite Difference Scheme

If we ignore for the time being the fact that the term F in (2.4)
is a function of UX and Uy this equation is similar to the type of
problem which was treated earlier by means of a second-order accurate
compact finite difference scheme (Philips and Rose [3]). However, their
argument depended essentially upon the fact that the coefficient matrices
C, D, E in (2.4) were nonsingular; in order to describe the extension
necessary when these coefficients are singular (compare (2.3)) it appears
simplest to rederive the derivation of the difference equations from
elementary principles. This is done here.

We suppose the computational domain can be subdivided into rectangular

. n At
computational cells ﬂjk{lx-le < Ax/2, Iy-ykl < Ay/2, It-tnl <5 and
write Ug.lk =U{GAx,kAy,nAt). We employ the notation

n _ ,n n
M5 T Uit U072 o
(3.1
n n n
6xUjk = (Uj_'__%_,k - Uj_%’k)/Ax >

etc. When no confusion is likely to arise we suppress the spatial indices
. n n n n n n n
by writing U, = U(+,-,nAt); thus UxU-’ éxU" qu., SyU_ , utU. , GtU.

n
involve the values of U at the center points of the faces of the cell ..
.. . . . . . n
A finite difference scheme which only involves data associated with w, is

called compact.




The approximation method to be described is based upon the following -
idea: suppose the solution U of (2.4) is known to be smooth; then the
result of approximating the coefficient matrices in (2.4) by their values
averaged over each computational cell ﬂn, say A?, B?, etc., leads to a

linear partial differential equation in each cell.

]

n
U, + AU+ B?Uy T U +FD),

(3.2) cou + D?Uy =3V,
DU+ EU_ = JW_.
T x vy x

This system will approximate (2.4) to terms of second-order in the mesh
parameters if ﬂn is sufficiently small. Because (3.2) is linear it is
feasible to construct a linear manifold of solutions in each cell and then,
by means of algebraic equations which express'continuity conditions at the
boundaries of neighboring cells together with the initial and boundary con-
ditions associated with thg problem, determine the parameters which lead to
an approximation to the solution of (2.4). These algebraic conditions are
expressed by the finite difference equations (3;9) whose development we now
describe.

The following discussion concerns (3.2) in a fixed cell n?; we there-
fore omit the indices *, n on the coefficients in this systems of equationmns.

With the coefficient matrices partitioned as in (2.3) introduce the following




definitions: I; is the 3x 3 identity matrix and
-1 -1
0 —allA12 0 bllB12
A= , B = b
0 I3 0 13
A . = -1 B._ = B., - B..b.1B
Ryp = By ~ Ax12178y0 ’ 22 = Baz 7 ByiPyiByo ’
= ¢l ; 6 = Lx w
we = Cyy By ’ x -2 % )
(3.3)
=51 3 - Bx
wy = E22 B22 s ey =5 wy s
1 0
Qwx) = R
0 exp wx
o 0
[AJ]_l = (o arbitrary).
-1
4] A22

We shall need to employ several results for which this notation will
prove useful: First, the algebraic system of equations AJX = Y may be
verified to have the solution X = [AJ]_lY. Second, the system of differential
equations AY = JCY' has the general solution Y(x) = Kﬂ(mx' x)a where
o 1is a vector parameter.

Each of the terms I, (xI-tA), (yI-tB),-ZQ(wx- X), ﬁQ(wy- y) 1is thus

a solution of (3.2) so that




(3.4)
U=gy+ (xI-tA), + (yI-tB)a, + AQ(w, * x)a, + ﬁQ(wy- y)os + tIF,

describes a solution manifold of (3.2). Set

Jv

CU_ + DU
X

y’
JW = DU_ + EU_.
X y
nt: n n n
The ten values of the vectors U  °, Uji%,k’ Uj,ki%’ Vjir%,k’ wfjl,ki%—

may be assumed to be continuous across contiguous cells. The partial

result of expressing the parameters {gi} in terms of these values is

it

n - -
(6t+A6x+ BcSy)U. AAcSXQ(wx . x)gé + BBéyQ(wy . y)g5 + JF

n
u U,

UL+ 0(ax%) = uyu‘_‘ + 0(ay?)

n n ~ d
(C6X4-D6y)U. JuxU CA(},\x — Q(wx- x)-SXQ(wx- x)
(3.5) '

|
=)
[==X3
——
=
w
3
»
QD
~
£
%)

.
<
N

|

e
b
o)
~
£
«
<
~

d_
y dx

n ~
- g ey} =6 .
(DS + Eéy)U. Juyw. EB (uy & Q(wy y) yQ(wy Y))ocs
Q(mx * %)~ chQ(wx . x))aa s

Dﬁ(u

where 0o, and Qg are to be determined by solving

n o _ .3 .d . .
3.6) J6yV. = CAcSX Ix Q(wx X) a,
~ d
JS_ W' = EBS_ « & cy) . .
6y . .B v dy Q(wy y) Qg

The solution of the latter pair of equations is

— " .d— ° —l. n
o, = [CA(Sx dx Q(wx x) ] JGXV' ,
(3.7)

- [EBs_ -3
y

-1 n
Qw, * JS W,
& (wy )] 6y .
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using the notation in (3.3) and noting that CA = CJ, EB = EJ.

Introduce the definitions

(3.8)

The result of employing (3.7) in (3.6) is,- finally,

n n n n
a) (8, +AS +BS U] = J(8, V. +06 W +F))

n _ n _ n
b) WU, = uu, qu.
(3.9)
n —3 _.éﬁ . n n
c) (C6x4-D6y)U. = (Jux 2 Qx GX)V_ + Ry&yw.
n _ __éx . n n
d) (D6X4-E6y)U. (Juy > Qy Gy)w. + RXG vV,
in which
def 0 0
| QX = 1 s
| 0 €ya(8)C
def (0 0 )
Q, = >
y -1
0 Ezzq(ey)E22
(3.10)
def 0 0
R = - ,
0 Dzzr(ex)A22
def 0 0
Ry = ,

~-1
0 Dzzr(ey)B22

where GX,Gy are defined by (3.3).




For real values of O the functions q(6) and r(8) given by

(3.8) are regular in 6 and are conveniently evaluated by

R

q(®) =6/3 , 6 small

(a)

R

sgn 0 , 8 large
(3.11) where sgn 6 = 6/|0]; also

62/6 » 0 small

24

r(0)
(b)
=1 s 6 large.

The matrices GX,Gy given by (3.3) are generalizations of the cell
Reynolds number. Consider ex: if S 1is the matrix which diagonalizes
-1 -~
Gx, say S BXS = ex, then
~ -1
s a(8 s,

~ -1
S l'(ex)s s

q(8)

r(Gx)

(3.12)

and the approximations given in (3.11) may be used to evaluate
q(8,), r(6)).

As mentioned earlier, the difference equations (3.9) generalize similar
equations which were described in Philips and Rose [3] when the matrices
C, D, and E were nonsingular. Arguments given there may be used to show
that the truncation error in (3.9) is second order in the mesh parameters
independent of 6_,0_.

Xy

The reader is asked to verify the fact that the algebraic equations
expressed by (3.9) together with (2.9) lead to a determined system of equations
for U?, V?, and W?. When the coefficient matrices in (3.9) are symmetric
and constant an energy-norm estimate for the solution may be given (cf. [3]);

this shows the existence and uniqueness of the solution and also implies the

convergence of the scheme any fixed values of the mesh parameters
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Ax = At/Ax, Ay = At/Ay. 1t is plausible that similar results hold when
the coefficient matrices in (3.9) are variable and we appeal to this

plausibility argument in the following discussion without explicit comment.

4, Solution Methods

a) As described in [3], compact schemes of the type (3.9) may be
solved by a

two-step method:

n+3

i) by eliminating the value U common to (3.9a) and (3.9b)

there results, with T = At/2,

u" " vl
P ( ) + TR ( ) = ( )+ TF ,
X y .
Vo W 0
4.1
L
u" by ute
P ( ) + TR ( ) = ( )+ T F
y X n *
W v 0
where
‘ ux4-TA6x —TGXJ
def
PX = (’ s
Ax
Cdx 2 Qxcsx_“xJ
+ -18.J
dos uy TBéy T5y
(4.2) P = s
Y ES bx 06 -uJ
y- 2 vy 'y

" o

AS -8.J
def X X
Rx ,
-1 -1
T Ddx ~T R(SX)Gx




B -
6y 6yJ

-1
T “D§ - R(6
T "R( y)dy

1
The solution of (4.2) is determined by U? ? and the imposed boundary

conditions for U?. A formal ADI solution of (4.1), accurate to 0(12), is

given by
(U?) U?—% |
-1 -1 n
=P "(I-1RP ) ( ) + TF
n X yy . )
\'A 0
(4.3) | ' _ -
u? U?'%
_pl,._ -1 n
(w‘“) Py (1 TRXPX ) ( 0 ) + TF, .

n

&

I

(ii) Using the solution U?, v, W? obtained from (4.1) U
may be calculated from either the "leapfrog" equation (3.9a) or from (3.9b)

In employing (4.1) the coefficient matrices are assumed to be evaluated
at the center point of the cell 7 . We shall not pause to indicate how this
may be approximated.

A drawback in employing (4.3) to solve (4.1) is that At must be suita-
bly restricted; when the viscosity u in (2.3) is sufficiently small this
restriction is approximated by the CFL condition for the dominant hyperbolic
part of the operator in (2.2). Presumably, in view of earlier remarks, (4.1)
is solvable for any value of the ratio of mesh parameters Ax, Ay. In order
to exploit this, particularly for the calculation of steady-state solutioms

of (3.9), a more effective solution method than (4.3) is required. This topic

will not be treated here, however.




~14-

We remark, finally, that the existence of the unique solution of
the algebraic equations (4.1) is a consequence of the (assumed) existence -
and uniqueness of the finite difference equations (3.9).

b) The operators Px’Py in (4.3) involve the solution of algebraic
two-point boundary value problems which can be obtained by a method due to
Keller [1]. A simpler solution method results by observing that U? may
be directly obtained by solving a block tridiagonal system of equations
(cf. [3]) as will now be shown. The asymptotic consequences when u ~ 0
will be described in section 6.

The solution of

n
U. .
J glaJ
P = R
x n
V, .
j 82,3

typifies the problem involved in applying (4.3) where Px is given by (4.2).

In a cell ﬂ? these equations can be solved for the values V?+l with the
-2
result
-1, + n +.n +
AV, = [J T UL +br UYL - gl
x j+3 [3] (aJ j+s bJ j-% gJ) ’
(4.5)
-1, - n - .0 -
AVE = [J Uh L +b, UL, + g,
j-3 T L ay Vg ¥y Uy g gJ) ’
in which
XX = At/Ax, K = 2xx/Ax ,
+
S |
(4.6) a” = 5[(Q D (I+A,A) + C],
r_ a1 _ _
b = 3[(Qt D)(I-A,4) -« Cl,
and

i+

g = [(12Q 8 tA8,].




. n n .
The pair of values U, ,, V, , are common to the contiguous cells
i+ i+
n n . n .
. .,1+ Expressions for the value V, in each s 1 r i
HJ, "J+l P 1 43 h such cell are given

by (4.5); the result of equating these expressions for V?+% and setting

This block-tridiagonal system of equations may be efficiently solved for
U? with the boundary conditions prescribed by (2.9) and the values V?
can then be obtained from (4.5). However, in order to evaluate the co-
efficient matrices ai, bi an effective means of approximating the matrix
Qx defined by (3.10) must be considered. This topic, with specific
reference to the Navier-Stokes equations (2.2) is the subject of the next

section.

5. The Matrices Qx’ Qy, Rx’Ry

The matrix Qx occurfing in the coefficients a,b in (4.6) was
defined in terms of A and C by (3.10) in terms of the matrix q(@x),
which itself was defined by (3.3) and (3.8). The matrix Qy is similarly
- defined in terms of the matrices B énd E.

Confining our attention to Qx’ first note that Qx is given, using
(3.3), by

(u- RT/u)é 0 RS

(5.1) 8 = 08x 0 u 0

e(y=1)T 0 £u

in which
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6 = (2+2 w7,
(5.2)
e =P.Jy
. 2u
Denote the eigenvalues of (EZ; 6x by ex’l,ex’z,ex’3. If
(5.3) o = €/§,
then
(5.4) ex,l = u,
and 6x,2,6x,3 are given as
26 2
G.5) X3 o LV v {aro) -1 +40(1-M%)
ud 2 2
™ YM

where M = u/c, c2 = YRT. The following approximations result:

M=1
26
X,2 - _ 1
56 2(1+0 Y) > 0,
(5.6)
26x,3 -
ud ‘
M small
26
X2 14+0c >0,
ud
(5.7)
20
X,3 2
= (1+0) - — < 0.
ud YMZ
M large
ex,2 . 1
ué ?
(5.8)
° 3
._.)SL— ~ O’




Writing
ex,l 0‘ 0
(5.9) Gx = . ex,z 0 ,
0 0 ex,3
then
—4 -w L ] 3 L] _1
(5.10) ex 2 S ex S s
where
0 Sy S5
S = 1 0 0 s
' 0 1 1
(5.11)
0 s3—s2 0
S_l =f-1 0 s + (s,-s,)
3 ) 3 2
1 0 —s}2
in which
(6 -gu)
' = XY =
(5.12) 5, c(-D)T , Y 2,3.
As a result, using (3.12)
_ pAx, 2 \ -1
(5.13) a0, = 5 a (G B )s

in which q((%Au—x)éx) may be approximated by using (3.8).
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In view of (5.6), (5.7), (5.8),

1 0 0
(5.14) lim q(8,) = S(sgn u °(O 1 0
u>0 0 0 &

where

£, = -1, Mo<1
=0 , M =20
=1 , Mx > 1
where M. = u/c.
p'e
Thus,
0 0
(5.16) Qx =

. ~1 -1
0 epps|aiag(ata, 1),a(8, ). ace, )Ty,

and

(5.17) lim Q=
u-0

. -1
0 czzs(dlag(l,l,Ex))S sgnu ° o

Similar expressions result for Qy noting (3.10).

In the same manner, using (3.8) and (3.10),

(5.18) R,

. “1.-1
0 dzzs[dlag(r(ex,l)r(ex,z)r(ex,3))}S s,




0
(5.19) lim R, = ( . )
>0 0 d,,S diag(l,1,1) S 522

with similar results for Ry.
Using (3.8) and (3.11), the results of this section allow the co-

efficient matrices Q and R in (3.9) to be evaluated as well as the

coefficient matrices in (4.7) as described by (4.6).

6. The Euler Equations

The Euler equations
(6.1) Ut + AUx + BUy = 0,

arise as the formal limit of the Navier-Stokes equations(2.5) as the
viscosity u =~ 0. If U(u) denotes the solution of the Navier-Stokes
equations with certain initial and boundary conditions, singular perturba-
tion methods provide an important means of describing the sense in which
U(u) may be approximated by a solution U of the Euler equations (6.1)
in regions exterior to boundary layers, shocks, etc. where vorticity can
be generated.

The solution U?(u) of the finite difference equations (3.9) together
with (3.4) determines an approximate solution, say U(u,Ax), of U(u) if
we assume that U(u,Ax) - U(u) as Ax = 0. The construction employed in
(3.4) is similar in viewpoint to one which could be employed by a singular
perturbation method if one were to allow a much greater degree of algebraic
complexity to be used in order to impose connection formulas between sub-
domains than is practical when analytic results are primarily desired. If,
formally, 1lim U(u,Ax) = U(Ax) it is thus reasonable to conjecture that

u>0
U(Ax) provides an approximation to the Euler solution U as well.
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An important mathematical difference between the Navier-Stokes equations
(2.4) and the Euler equation (6.1) lies in the formulation of boundary
conditions. For (2.4) U(u) may be prescribed at boundaries as indicated
by (2.9) while for (6.1) only certain combinations of U as determined by
characteristics are permissible. This reduction of boundary conditionms
is, of course, a familiar feature of singular perturbation problems.

We now propose to examine how the Euler boundary conditions for U(Ax)
result from U(y,Ax) when u > O when (3.9) is employed.

As described in section 4 the ADI solution method (4.3) used to solve
(3.9) can be effectively solved by employing the block-~tridiagonal system

(4.7) which we now consider in the simplified form

- . + n n _
(6.2) -Ja U2+l + b Uﬁ—l + c Ug = 895 £ =1,2,...,L-1,
where here Ug and JUE are prescribed as inflow and outflow conditions (cf.
(2.9)).
With S given by (5.11), let
0
(6.3) Q. = 5

0 S[diag(l,l,gx)]s—l sgnu

using (3.3) to define [C]—l, (5.17) may be written
, A -1
(6.4) lim Q = c Q_[c] ,
X X
>0

while, according to (4.6),

1m Ja = 3[0@ - DI A+,
(6.5) o

lim bT =%[((I—J)+C(QX+J)[C]_1) (I+>\XA)J.
u=>0




A simple calculation yields

o L fx®3ms2 0 (A-E)s;s,
(6.6)  S[diag(1,1,£ )15 = (ds) 0 5s 0 ,
Ex -1 0 s3 - Exsz
where §s = S3 ~ Sy Thus, assuming u > 0, sgnu = 1 so that
0 0 0 0
) 1 0 (Ex' 1)53 0 (l--Ex)szs3
(6.7) Q - J= (Ss) .
0 0 0 0
0 € -1 0 1-£s,
0 0 0 0
A -1 0 (EX+1)53+232 0 (1-gx)s 53
(6.8) Q +J= (8s)
0 0 28s 0
0 (Ex-l) 0 2s3-(E;x+l)s2

Suppose U * 0. For & = L-1, the coefficient Ja  in (6.2) determines
the influence of the outflow boundary condition JUE; using (6.5) and (6.7)

there results:

[

M>1 (5 =1): here, QX-J=0.

M<1 (§ =0,-1): here, rank (Q -J) = 1.

+
For & = 0, the coefficient b in (6.2) similarly determines the influence

of the inflow boundary condition U Now, using (6.7) and (6.8), there results

n
0"
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M>1 (€

1): rank(ﬁxi-J)

]
w
-

X

]
[

M<l (= 0,-1): rank(6X+J) 2,

i.e., rank bT = 4 (M>1), rank b’ = 3 (M < 1).

Thus, the number of boundary conditions for (3.9) which are effective

when y =0 may be summarized as:

Outflow Inflow
M>1 0 4
M<1 1 3

These are exactly the number of boundary conditions which are appropriate

for the Euler equations (6.1).

For small values of u the terms KXC in which arise in evaluating
ai, bi in (4.6) may be retained while using, at the same time, the asymptotic
approximation for Q_ given by (6.4). If this approximation is used in (4.3)
and if terms proportioned to 1 1in evaluating the matrices Rx’Ry (defined
by (4.2)) in (4.3) are neglected, the result leads, we assert, to a dissipa-
tive finite difference scheme for treating (6.1) in which only the hyper-

bolic boundary conditions which arise from the limit u =+ 0 influence

the calculations to any significant extent.

This paper has described a class of compact finite difference equations
(3.9) for treating the Navier-Stokes equations when written in the form (2.4).
For model problems in which the coefficient matrices appearing in these equa-

tions are symmetric and constant the resulting scheme can be shown to be




convergent for all values of the mesh parameters Ax = At/Ax, A_ = At/Ay
and also to provide second-order accuracy. In this theory the influence
of the viscosity 3 primarily determines the size of fhe computational
subdomains within which variations in the coefficient matrices A and B
can be regarded as small.

An important feature of the finite difference scheme (3.9) is that
the natural physical boundary conditions are employed; when u = 0 only

the boundary conditions for the Euler problem influence the solutiomn.
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